Una vez clasificados los elementos se sugiere hacer preguntas como las
Siguientes:
*¿Por qué unos elementos son metálicos y otros no metálicos?
*¿Cómo la estructura de los átomos de los elementos nos permite explicar lo anterior?
*Investigación bibliográfica sobre el descubrimiento del electrón, protón y neutrón y sobre los modelos atómicos de Thomson, de Rutherford y de Bohr.
(A20)
Durante los siglos VI a IV antes de Cristo, en las ciudades griegas surgió una nueva mentalidad, una nueva forma de ver el mundo no como algo controlado por los dioses y manejado a su capricho, sino como una inmensa máquina gobernada por una leyes fijas e inmutables que el hombre podía llegar a comprender. Fue esta corriente de pensamiento la que puso las bases de la matemática y las cienciasexperimentales. Demócrito, uno de estos pensadores griego, en al siglo IV antes de Cristo, se interrogó sobre la divisibilidad de la materia. A simple vista las sustancias son continuas y se pueden dividir. ¿Es posible dividir una sustancia indefinidamente? Demócrito pensaba que no, que llegaba un momento en que se obtenían unas partículas que no podían ser divididas más; a esas partículas las denominó átomos, que en griego significa indivisible. Cada elemento tenía un átomo con unas propiedades y forma específicas, distintas de las de los átomos de los otros elementos. | De todos los dioses Hefesto era el único que trabajaba, su labor constante en la fragua y el yunque, forjando utensilios, armas, autómatas e incluso los rayos de Zeus, hizo que fuera el dios de la técnica y con ella de la civilización. |
Las ideas de Demócrito, sin estar olvidadas completamente, cayeron en desuso durante más de dos mil años. |
Mientras tanto, se desarrolló la química, se descubrieron nuevos elementos y se descubrieron las leyes que gobiernan las transformaciones químicas. |
Precisamente para explicar algunas de estas leyes, las leyes ponderales,
Dalton, en 1808 propuso una nueva teoría atómica. Según esta teoría, los elementos estaban formados por átomos, indivisibles e indestructibles, todos iguales entre sí, pero distintos de los átomos de los otros elementos. la unión de los átomos daba lugar a la variedad de sustancias conocidas y la ruptura de las uniones entre los átomos para formar nuevas uniones era el origen de las transformaciones químicas. | Símbolos convencionales propuestos por Dalton |
Pila de Volta | Cuando en 1800 el italiano Volta descubrió la pila eléctrica, los químicos tuvieron una fuente continua de electricidad y se descubrieron muchos nuevos elementos gracias a ella. También se descubrió que algunas sustancias, como la sal, al disolverse en agua, podían transmitir la electricidad, mientras que otras, como el azúcar, no lo hacían. El físico y químico inglés Faraday, en la primera mitad del siglo XIX,estableció las leyes de la electroquímica, poniendo en relación cuantitativa algunas transformaciones químicas y la electricidad e intentó hacer pasar electricidad a través del vacío (lo que demostraría la existencia de partículas de electricidad), fracasando al no lograr un vacío lo bastante perfecto. A finales del siglo XIX Crookes obtuvo un vacío suficiente, observó que al someter en el vacío unas placas metálicas a una gran diferencia de potencial, unas partículas, con carga negativa, que se llamaron electrones, abandonaban la placa cargada negativamente y se movían hacia la que tenía carga positiva. Esas mismas partículas aparecían si se iluminaba un metal con luz ultravioleta. Estaba claro que sólo podían proceder de los átomos del metal, así que el átomo no era indivisible, estaba formado por partículas. |
El físico inglés Thomson creyó que el átomo estaba formado por una esfera de carga positiva en la que se engastaban, como pasas en un pastel, los electrones. pero su propio discípulo Rutherford, descubrió que no podía ser así, que toda la la carga positiva del átomo y casi toda su masa se encontraba en un reducido espacio, el núcleo atómico, mientras que su carga negativa de electrones estaban muy lejos de él, girando a su alrededor, de forma que la mayor parte del átomo estaba vacío (a escala, si el átomo tuviera el tamaño de una plaza de toros, el núcleo tendría el tamaño de un grano de arena). Posteriores investigaciones determinaron que el núcleo atómico estaba formado por dos tipos de partículas, los protones, de carga positiva, y los neutrones, sin carga eléctrica. | Átomo de Thomson Átomo de Rutherford |
En 1860, los físicos alemanes Bunsen y Kirchhoff descubrieron que cada átomo, sin importar su estado, al ser calentado emite una luz de colores característica, los espectros atómicos. Gracias a su invención, se descubrió el elemento Helio, que se emplea en los globos, en el Sol, antes de sospecharse su existencia en la Tierra. |
El físico danés Bohr, en 1913, explicó la existencia de los espectros atómicos suponiendo que los electrones no giran en torno al núcleo atómico en cualquier forma, sino que las órbitas de los electrones están cuantizadas mediante 3 números: |
el número cuántico principal, n, que determina la distancia al núcleo, el radio de la órbita; el número cuántico azimutal, l, que determina la excentricidad de la órbita; y el número cuántico magnético, m, que determina su orientación en el espacio. Con posterioridad se añadió un cuarto número cuántico, el número cuántico de spín, s, que indica la rotación del electrón sobre si mismo. |
Un átomo emitía o absorbía luz cuando un electrón pasaba de una órbita a otra Y no podían existir dos electrones en el mismo átomo, con los cuatro números cuánticos iguales. |
Ya en la década de 1920 se propuso, gracias a los esfuerzos de Schrödinger, Heisenberg y el propio Bohr, la teoría de la mecánica cuántica, que da explicación del comportamiento de los electrones y átomos individualmente, en compuestos y en las transformaciones químicas... |
Modelo Atómico de Dalton:
Elaborar un cubo de tres por tres centímetros, colocar dentro del cubo las esferas solidas (átomos).
Equipo | Tamaño de la esfera | numero |
1 | grande | 4 |
2 | grande | 2 |
3 | pequeña | 45 |
4 | grandes | 4 |
5 | Pequeña | 55 |
6 | pequeña | 45 |
División del aire en sus componentes:
Material: Tubo de ensaye de 20 x 200 mm, vaso de precipitados de 250 ml., o cuba hidroneumática
Sustancias: velas, cerillos
Procedimiento: -
Colocar la vela dentro del vaso de precipitados, (fijar con la parafina al fondo del vaso.
-Colocar tres centímetro de altura de agua
-encender la vela
- cubrir la vela con el tubo de enraye y observar los cambios ocurridos.
Observaciones:
Al tapar la vela con el vaso, la luz de la vela se apagó e inmediatamente subió el agua alrededor de la vela, esto sucede por falta de oxígeno.
Conclusiones:
Indicar los compuestos formados y el gas sobrante dentro del tubo de ensayo.
MODELOS ATÓMICO DE DALTON
Dalton explicó su teoría formulando una serie de enunciados simples:
- La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
- Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
- Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
- Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
MODELO ATÓMICO DE THOMSON
El modelo atómico de Thomson, es una teoría sobre la estructura atómica propuesta en 1904 por Joseph John Thomson, descubridor del electrón[1] en 1897, mucho antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como un pudin de pasas. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga positiva se postulaba con una nube de carga positiva. En 1906 Thomson recibió el premio Nobel de Física por sus investigaciones en la conducción eléctrica en gases.El átomo no deja de ser un sistema material que contiene una cierta cantidad de energía externa. Ésta provoca un cierto grado de atracción de los electrones contenidos en la estructura atómica. Desde este punto de vista, puede interpretarse que el modelo atómico de Thomson es un modelo actual como consecuencia de la elasticidad de los electrones en el coseno de la citada estructura.
MODELOS ATÓMICO DE RUTHERFORD
El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.
La importancia del modelo de Rutherford no residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que si no, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.
MODELO ATÓMICO DE BOHR
En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.
EL ÁTOMO
En química y física, átomo (del latín atomum, y éste del griego ἄτομον, sin partes)[1] es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos.
El concepto de átomo como bloque básico e indivisible que compone la materia del universo fue postulado por la escuela atomista en la Antigua Grecia. Sin embargo, su existencia no quedó demostrada hasta el siglo XIX. Con el desarrollo de la física nuclear en el siglo XX se comprobó que el átomo puede subdividirse en partículas más pequeñas
El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases:
- Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10–27 kg y una masa 1837 veces mayor que la del electrón.
- Neutrones: Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10–27 kg).
El núcleo más sencillo es el del hidrógeno, formado únicamente por un protón. El núcleo del siguiente elemento en la tabla periódica, el helio, se encuentra formado por dos protones y dos neutrones. La cantidad de protones contenidas en el núcleo del átomo se conoce como número atómico, el cual se representa por la letra Z y se escribe en la parte inferior izquierda del símbolo químico. Es el que distingue a un elemento químico de otro. Según lo descrito anteriormente, el número atómico del hidrógeno es 1 (1H), y el del helio, 2 (2He).
Erendira, Saludos, Buen trabajo, queda registrado.
ResponderEliminarProf. Agustín